Capillary condensation under atomic scale pressure
Charlex, E. And Sicotti, M. Capillary condensation in confined media (CRC 2010).
Van Honschoten, JW, Brunets, N. & Tas, NR Capillarity on the nanoscale. Chem. Rev. Company. 39, 1096-1114 (2010).
Google Scholar
Malijevský, A. & Jackson, G. Perspective on the interfacial properties of liquid nanoparticles. J. Phys. Condenses. Thing 24, 464121 (2012).
Google Scholar
Barsotti, E., Tan, SP, Saraji, S., Piri, M. & Chen, J.-H. A review of capillary condensation in nanocomposites: implications for hydrocarbon recovery from cramped tanks. fuel 184, 344–361 (2016).
Thompson, W. About the balance of vapor on a curved surface of a liquid. Brook. R. Soc. Edenb. 7, 63-68 (1872).
Google Scholar
Aukett, PN, Quirke, N., Riddiford, S. & Tennison, SR. Methane adsorption on micro-porous carbon – a comparison of experiment, theory, and simulation. carbon 30, 913-924 (1992).
Fisher, LR, Gamble, RA & Middlehurst, J. The kelvin equation and capillary condensation of water. nature 290, 575-576 (1981).
Kohonen, MM & Christenson, HK. Capillary condensation of water between washed mica surfaces. Langmuir 16, 7285-7288 (2000).
Metropoulos, A. The Kelvin equation. J. Colloid Interface Science. 317, 643-648 (2008).
Zhong, J. et al. Capillary condensation in channels with a depth of 8 nm. J. Phys. Chem. Lett. 9, 497-503 (2018).
Yang, G., Chai, D., Fan, Z. & Li, X. Capillary condensation of mono- and multicomponent fluids in nanopores. Indiana Prairie. Chem. Precision. 58, 19302–19315 (2019).
Kim, S., Kim, D., Kim, J., An, S. & Jhe, W. Direct evidence of bending-dependent surface tension in capillary condensation: the Kelvin equation at the molecular scale. Phys. 10th Rev. 8041046 (2018).
Google Scholar
Gruener, S., Hofmann, T., Wallacher, D., Kityk, AV & Huber, P. Capillary elevation in hydrophilic nanopores. Phys. Rev. E. 79, 067301 (2009).
Google Scholar
Vincent, or. , Margate, B. Stroke, AD impregnation produced by condensation of capillaries in nanopores. Langmuir 33, 1655–1661 (2017).
Shane, D. Hwang, J and J, W. Ice-VII as the molecular structure of the surrounding water nanomeniscus. Nat. Mutual. 10286 (2019).
Google Scholar
Verdaguer, A., Sacha, GM, Bluhm, H. & Salmeron, M. Molecular structure of water in interfaces: nanometer hydration. Chem. pastor. 106, 1478-1510 (2006).
Matsuoka, H, Fukui, S, Kato, T. Nanomiscus forces in unsaturated vapors: a remarkable limitation of macroscopic properties. Langmuir 18, 6796-6801 (2002).
Bowles, JG on the validity of the Kelvin equation. J. Phys. Maths. The general. 18, 1551-1560 (1985).
Walton, GPRB and Quirk, N.V. Capillary condensation: a molecular simulation study. mall. together. 2, 361–391 (1989).
Google Scholar
Cheng, S. & Robbins, MO. Adhesion of nanofilaments between parallel plates. Langmuir 32, 7788–7795 (2016).
Knežević, M. & Stark, H. Capillary condensation in an active bath. EPL 12840008 (2019).
Google Scholar
Sing, KSW & Williams, RT. Historical aspects of capillary ability and capillary thickening. Mesoporous mater. 154, 16-18 (2012).
Schoen, M. & Günther, G. Phase transitions in nanoscale fluids: synergistic coupling between soft and solid matter. Soft material 6, 5832-5838 (2010).
Gore, G., Hopper, B, Bernstein, N. Adsorption-induced deformation of nanomaterials – a review. Phys application. pastor. 4011303 (2017).
Google Scholar
Altabet, YE, Haji-Akbari, A. & Debenedetti, PG. Effect of elasticity of materials on thermodynamics and kinetics of water evaporation induced hydrophobicity. Brook. Natl Acad. Sciences. United States of America 114, E2548 – E2555 (2017).
Radha, B et al. Molecular transport through capillaries made with precision at an atomic scale. nature 538222-225 (2016).
Gopinadhan, K et al. Complete exclusion of ions and proton transport through single-layer confined water. Science 363, 145–148 (2019).
Drelich, J., Chibowski, E., Meng, DD & Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft material 7, 9804–9828 (2011).
Mücksch, C., Rösch, C., Müller-Renno, C., Ziegler, C. & Urbassek, HM. Consequences of hydrocarbon contamination of wettability and protein absorption on graphite surfaces. J. Phys. Chem. C 119, 12496-12501 (2015).
Google Scholar
Fumagali, L. Et al. Abnormally low dielectric constant for confined water. Science 360, 1339-1342 (2018).
Weeks, BL & Vaughn, MW. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 21, 8096-8098 (2005).
Malijevský, A. & Parry, AO. Modified Kelvin equations for capillary condensation in narrow and wide grooves. Phys. Pastor Litt. 120, 135701 (2018).
Google Scholar
Christenson, HK & Thomson, NH The nature of air-cleaved mica surface. browse. Sciences. Replay / count. 71, 367-390 (2016).
Neek-Amal, M., Peeters, FM, Grigorieva, IV & Geim, AK Effects of susceptibility on the viscosity of nanoparticles. ACS Nano 10, 3685–3692 (2016).
Google Scholar
Horace, I et al. WSXM: Software for probe microscopy examination and nanotechnology tool. Science Pastor. The instrument. 78013705 (2007).
Gore, J et al. Flexible response of mesoporous silicon to capillary stress in the pore. Phys application. Lett. 106, 261901 (2015).
Google Scholar
Bangham, DH & Fakhoury, N. The expansion of coals associated with absorption of gases and vapors. nature 122, 681-682 (1928).
Li, T. & Zhang, Z. Substrate-regulated graphene morphology. J. Phys. Dr 43, 075303 (2010).
Google Scholar
Scharfenberg, S., Mansukhani, N., Chialvo, C., Weaver, RL & Mason, N. A note on sudden instability in graphene. Phys application. Lett. 100021910 (2012).
Google Scholar
Israelachvili, JN Between particles and surface forces (Academic, 2011).
Heppler, RC Mechanics of materials 814 (Pearson, 2015).
McNeil, LE & Grimsditch, M. Flexible Muscovite Mica Models. J. Phys. Condenses. Thing 5, 1681–1690 (1993).
Cost, JR, Janowski, KR & Rossi, R. The elastic properties of isotropic graphite. Elephant. Permissible. 17, 851-854 (1968).
Ling, FF, Lai, WM, Lucca, and DA Surface Mechanics Fundamentals: With Applications 96-97 (Springer, 2012).
Plimpton, S. Fast parallel algorithms for short-term molecular dynamics. J. Compote. Phys. 117, 1–19 (1995).
Google Scholar
Berendsen, HJC, Grigera, JR & Straatsma, TP.The missing term in effective pair potentials. J. Phys. Chem. 916269-6271 (1987).
Wu, Y. & Aluru, NR graphite reaction parameters for carbon and unconstrained water. J. Phys. Chem. B 117, 8802–8813 (2013).
Cicero, G., Grossman, JC, Schwegler, E., Gygi, F. & Galli, G. Water trapped in nanotubes and between graphene sheets: a preliminary study. J. Chem. a company. 130, 1871-1878 (2008).
Sendner, C., Horinek, D., Bocquet, L. & Netz, RR Water interfaces on hydrophobic and hydrophobic surfaces: slip, viscosity and diffusion. Langmuir 25, 10768-10781 (2009).
Communicator. Reader. Hipster-friendly introvert. General zombie specialist. Tv trailblazer