Capillary condensation under atomic scale pressure

0
Capillary condensation under atomic scale pressure
  • 1.

    Charlex, E. And Sicotti, M. Capillary condensation in confined media (CRC 2010).

  • 2.

    Van Honschoten, JW, Brunets, N. & Tas, NR Capillarity on the nanoscale. Chem. Rev. Company. 39, 1096-1114 (2010).

    Google Scholar

  • 3.

    Malijevský, A. & Jackson, G. Perspective on the interfacial properties of liquid nanoparticles. J. Phys. Condenses. Thing 24, 464121 (2012).

    Advertisement

    Google Scholar

  • 4.

    Barsotti, E., Tan, SP, Saraji, S., Piri, M. & Chen, J.-H. A review of capillary condensation in nanocomposites: implications for hydrocarbon recovery from cramped tanks. fuel 184, 344–361 (2016).

    Issue

    Google Scholar

  • 5.

    Thompson, W. About the balance of vapor on a curved surface of a liquid. Brook. R. Soc. Edenb. 7, 63-68 (1872).

    Google Scholar

  • 6.

    Aukett, PN, Quirke, N., Riddiford, S. & Tennison, SR. Methane adsorption on micro-porous carbon – a comparison of experiment, theory, and simulation. carbon 30, 913-924 (1992).

    Issue

    Google Scholar

  • 7.

    Fisher, LR, Gamble, RA & Middlehurst, J. The kelvin equation and capillary condensation of water. nature 290, 575-576 (1981).

    Advertisement
    Issue

    Google Scholar

  • 8.

    Kohonen, MM & Christenson, HK. Capillary condensation of water between washed mica surfaces. Langmuir 16, 7285-7288 (2000).

    Issue

    Google Scholar

  • 9.

    Metropoulos, A. The Kelvin equation. J. Colloid Interface Science. 317, 643-648 (2008).

    Advertisement
    Issue

    Google Scholar

  • 10.

    Zhong, J. et al. Capillary condensation in channels with a depth of 8 nm. J. Phys. Chem. Lett. 9, 497-503 (2018).

    Issue

    Google Scholar

  • 11.

    Yang, G., Chai, D., Fan, Z. & Li, X. Capillary condensation of mono- and multicomponent fluids in nanopores. Indiana Prairie. Chem. Precision. 58, 19302–19315 (2019).

    Issue

    Google Scholar

  • 12.

    Kim, S., Kim, D., Kim, J., An, S. & Jhe, W. Direct evidence of bending-dependent surface tension in capillary condensation: the Kelvin equation at the molecular scale. Phys. 10th Rev. 8041046 (2018).

    Google Scholar

  • See also  Moon landing: Apollo 11 scientist demonstrates off top secret Moon landing pictures | Science | Information
  • 13.

    Gruener, S., Hofmann, T., Wallacher, D., Kityk, AV & Huber, P. Capillary elevation in hydrophilic nanopores. Phys. Rev. E. 79, 067301 (2009).

    Advertisement

    Google Scholar

  • 14.

    Vincent, or. , Margate, B. Stroke, AD impregnation produced by condensation of capillaries in nanopores. Langmuir 33, 1655–1661 (2017).

    Issue

    Google Scholar

  • 15.

    Shane, D. Hwang, J and J, W. Ice-VII as the molecular structure of the surrounding water nanomeniscus. Nat. Mutual. 10286 (2019).

    Advertisement
    PubMed
    PubMed Central

    Google Scholar

  • 16.

    Verdaguer, A., Sacha, GM, Bluhm, H. & Salmeron, M. Molecular structure of water in interfaces: nanometer hydration. Chem. pastor. 106, 1478-1510 (2006).

    Issue

    Google Scholar

  • 17.

    Matsuoka, H, Fukui, S, Kato, T. Nanomiscus forces in unsaturated vapors: a remarkable limitation of macroscopic properties. Langmuir 18, 6796-6801 (2002).

    Issue

    Google Scholar

  • 18.

    Bowles, JG on the validity of the Kelvin equation. J. Phys. Maths. The general. 18, 1551-1560 (1985).

    Advertisement
    Issue

    Google Scholar

  • 19.

    Walton, GPRB and Quirk, N.V. Capillary condensation: a molecular simulation study. mall. together. 2, 361–391 (1989).

    Google Scholar

  • 20.

    Cheng, S. & Robbins, MO. Adhesion of nanofilaments between parallel plates. Langmuir 32, 7788–7795 (2016).

    Issue

    Google Scholar

  • 21.

    Knežević, M. & Stark, H. Capillary condensation in an active bath. EPL 12840008 (2019).

    Google Scholar

  • 22.

    Sing, KSW & Williams, RT. Historical aspects of capillary ability and capillary thickening. Mesoporous mater. 154, 16-18 (2012).

    Issue

    Google Scholar

  • 23.

    Schoen, M. & Günther, G. Phase transitions in nanoscale fluids: synergistic coupling between soft and solid matter. Soft material 6, 5832-5838 (2010).

    Advertisement
    Issue

    Google Scholar

  • 24.

    Gore, G., Hopper, B, Bernstein, N. Adsorption-induced deformation of nanomaterials – a review. Phys application. pastor. 4011303 (2017).

    Advertisement

    Google Scholar

  • 25.

    Altabet, YE, Haji-Akbari, A. & Debenedetti, PG. Effect of elasticity of materials on thermodynamics and kinetics of water evaporation induced hydrophobicity. Brook. Natl Acad. Sciences. United States of America 114, E2548 – E2555 (2017).

    Issue

    Google Scholar

  • 26.

    Radha, B et al. Molecular transport through capillaries made with precision at an atomic scale. nature 538222-225 (2016).

    Advertisement
    Issue

    Google Scholar

  • 27.

    Gopinadhan, K et al. Complete exclusion of ions and proton transport through single-layer confined water. Science 363, 145–148 (2019).

    Advertisement
    Issue

    Google Scholar

  • 28.

    Drelich, J., Chibowski, E., Meng, DD & Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft material 7, 9804–9828 (2011).

    Advertisement
    Issue

    Google Scholar

  • 29.

    Mücksch, C., Rösch, C., Müller-Renno, C., Ziegler, C. & Urbassek, HM. Consequences of hydrocarbon contamination of wettability and protein absorption on graphite surfaces. J. Phys. Chem. C 119, 12496-12501 (2015).

    Google Scholar

  • 30.

    Fumagali, L. Et al. Abnormally low dielectric constant for confined water. Science 360, 1339-1342 (2018).

    Advertisement
    Issue

    Google Scholar

  • 31.

    Weeks, BL & Vaughn, MW. Direct imaging of meniscus formation in atomic force microscopy using environmental scanning electron microscopy. Langmuir 21, 8096-8098 (2005).

    Issue

    Google Scholar

  • 32.

    Malijevský, A. & Parry, AO. Modified Kelvin equations for capillary condensation in narrow and wide grooves. Phys. Pastor Litt. 120, 135701 (2018).

    Advertisement

    Google Scholar

  • 33.

    Christenson, HK & Thomson, NH The nature of air-cleaved mica surface. browse. Sciences. Replay / count. 71, 367-390 (2016).

    Advertisement
    Issue

    Google Scholar

  • 34.

    Neek-Amal, M., Peeters, FM, Grigorieva, IV & Geim, AK Effects of susceptibility on the viscosity of nanoparticles. ACS Nano 10, 3685–3692 (2016).

    Issue
    PubMed
    PubMed Central

    Google Scholar

  • 35.

    Horace, I et al. WSXM: Software for probe microscopy examination and nanotechnology tool. Science Pastor. The instrument. 78013705 (2007).

    Advertisement
    Issue

    Google Scholar

  • 36.

    Gore, J et al. Flexible response of mesoporous silicon to capillary stress in the pore. Phys application. Lett. 106, 261901 (2015).

    See also  Darius Brugiman leaves SuS Olfen and turns to TuS Körne

    Advertisement

    Google Scholar

  • 37.

    Bangham, DH & Fakhoury, N. The expansion of coals associated with absorption of gases and vapors. nature 122, 681-682 (1928).

    Advertisement
    Issue

    Google Scholar

  • 38.

    Li, T. & Zhang, Z. Substrate-regulated graphene morphology. J. Phys. Dr 43, 075303 (2010).

    Advertisement

    Google Scholar

  • 39.

    Scharfenberg, S., Mansukhani, N., Chialvo, C., Weaver, RL & Mason, N. A note on sudden instability in graphene. Phys application. Lett. 100021910 (2012).

    Advertisement

    Google Scholar

  • 40.

    Israelachvili, JN Between particles and surface forces (Academic, 2011).

  • 41.

    Heppler, RC Mechanics of materials 814 (Pearson, 2015).

  • 42.

    McNeil, LE & Grimsditch, M. Flexible Muscovite Mica Models. J. Phys. Condenses. Thing 5, 1681–1690 (1993).

    Advertisement
    Issue

    Google Scholar

  • 43.

    Cost, JR, Janowski, KR & Rossi, R. The elastic properties of isotropic graphite. Elephant. Permissible. 17, 851-854 (1968).

    Advertisement
    Issue

    Google Scholar

  • 44.

    Ling, FF, Lai, WM, Lucca, and DA Surface Mechanics Fundamentals: With Applications 96-97 (Springer, 2012).

  • 45.

    Plimpton, S. Fast parallel algorithms for short-term molecular dynamics. J. Compote. Phys. 117, 1–19 (1995).

    Advertisement
    Issue
    Maths

    Google Scholar

  • 46.

    Berendsen, HJC, Grigera, JR & Straatsma, TP.The missing term in effective pair potentials. J. Phys. Chem. 916269-6271 (1987).

    Issue

    Google Scholar

  • 47.

    Wu, Y. & Aluru, NR graphite reaction parameters for carbon and unconstrained water. J. Phys. Chem. B 117, 8802–8813 (2013).

    Issue

    Google Scholar

  • 48.

    Cicero, G., Grossman, JC, Schwegler, E., Gygi, F. & Galli, G. Water trapped in nanotubes and between graphene sheets: a preliminary study. J. Chem. a company. 130, 1871-1878 (2008).

    Issue

    Google Scholar

  • 49.

    Sendner, C., Horinek, D., Bocquet, L. & Netz, RR Water interfaces on hydrophobic and hydrophobic surfaces: slip, viscosity and diffusion. Langmuir 25, 10768-10781 (2009).

    Issue

    Google Scholar

  • Leave a Reply

    Your email address will not be published. Required fields are marked *